Risk Management of Class 3 Electronics as a Function of Cleanliness

Bill Capen & Jason Edgar Honeywell FM&T Mark McMeen & Mike Bixenman Magnalytix LLC

Abstract:

In the design and development of safe, effect devices, reducing risk, and ensuring reliability are a manufacturer's first responsibility. The advanced technology inherent in Class 3 hardware and their production means that all aspects of the system – including mechanics, electronics, software, and hardware must be evaluated for reliability. Every aspect of its development – from design and prototyping through manufacture, distribution, disposal, and decommissioning must adhere to strict quality standards that are documented and traceable to functional and safety requirements.

Risk management involves the systematic application of policies, procedures, and practices to the task of analyzing, evaluating, controlling, and monitoring the risk inherent in Class 3 hardware. Risk management is an iterative process that should assess all aspects of the product's lifecycle and must be implemented and documented throughout the design, development, prototyping, manufacture, and phases of a product's lifecycle to ensure that no new or unexpectedly severe risks go unmanaged.

Electronic assemblies are prone to intermittent and total failure from process contamination. Testing is needed to qualify solder materials, reflow conditions, and cleaning processes. Contamination trapped under leadless components is highly problematic due to the pitch reduction, shadowing effects of high components next to bottom terminated components, actively of residues, voltage bias, and environmental exposure. The purpose of this research paper is to apply risk management to contamination. The designed experiments are focused on improved methods for proving out and developing better methods at the point of the manufacturing process for qualifying soldering and cleaning processes that result in acceptable levels of flux and other residues.

Introduction

Reliability is the ability of a product to properly function, within specific performance limits, for a specific period of time, under the life cycle application conditions¹. Specific performance limits require the product to function within certain tolerances in order to be reliable. Specific period of time means that the product has a useful life during which it is expected to function within specifications. Under life cycle application conditions means that the product is reliable within its operational and environmental conditions.

Generally, contamination failures do not just happen. Failures arise from conditions applied during assembly and any of the following stages of a product's life cycle:

- Product design
 - Bare Board
 - Components
 - Layout
 - Assembly
 - Materials selection
 - Handling
 - Stencil Printing
 - Pick and Placing Components
 - Reflow conditions
 - Soldering steps throughout the board build process
 - Cleaning conditions
 - Conformal coating
- Storage
- Packaging
- Transportation
- The products end-use environment

The issue is that the damage or failure mode may not be detected until the later phases of the life cycle.

When a failure occurs, root cause analysis has four major objectives:

- 1. Verify that a failure occurred
- 2. Determine the symptom or the apparent way a part has failed (the mode)
- 3. Determine the mechanism and the root cause of the failure
- 4. Recommend corrective and preventive action

Before performing a root cause analysis, researchers evaluate all possible symptoms to the root causes of failure. Symptoms are manifestations of a problem that indicates a failure exists. An

example is performing a SIR test where the surface insulation resistance values are trending below 100 megohms (1e 8th Log Ohms). An apparent cause is a superficial reason for the failure. An example is the ionic residues that remain near the conductive pathways at the surface or under the components bottom termination. The root cause is the most basic causal factor. For example, a component has a low standoff gap that prevents flux outgassing. As a result, the flux located under the component termination is active. The low standoff gap may prevent the cleaning fluid from penetrating, wetting, and removing errant flux residues.

Root cause analysis is designed to determine:

- 1. WHAT happened during a particular occurrence
- 2. HOW it happened
- 3. Understand WHY it happened

Only when one can determine WHY an event or failure occurred, will one be able to determine corrective measures. Over time, the root causes identified can be used to target major opportunities for improvement.

When considering opportunities for improvement, researchers commonly evaluate failure modes and the effects to identify all possible failures in the design, the manufacturing or assembly process, or a product or service. Knowledge of stress points combined with failure models allows the research team to prioritize failure mechanisms according to their severity and likelihood of occurrence. The FMEA methodology requires:

- 1. Identify a failure mode
- 2. Identify the likely cause of failure
- 3. Identify the failures probability of occurrence
- 4. Establish the likelihood of detection
- 5. Identify and prove out corrective actions

Purpose of the Research

Electronic components have continued to reduce in size. Component miniaturization narrows the pitch between conductors. The pathway for contamination to migrate electrochemically from the anode to the cathode increases. As a result, the cleanliness of these electronic components is critical to reliability. The research team is interested in understanding and controlling failure due to contamination.

The purpose of this research is to prove out the SIR test method on test vehicles populated with critical components that are used on production hardware. The test method is designed to track contamination-related failures using highly accelerated test conditions. The test methodology allows for a systematic and detailed assessment of temperature – humidity – bias testing at specific points on selected component lands and under the bottom termination. The test methodologies allow the research team to perform root-cause failure mechanisms on the chosen components representative of the potential failure sites.

The research team plans to use data analysis to perform a FEMA analysis. The goal is to identify the failure mode, the likely cause of failure, the probability of occurrence, the likelihood to detect these causes at the production site, and to identify and prove out corrective actions.

Problem Statement

Highly dense electronics use leadless component bodies that are increasing to miniaturize. Residues trapped under the bottom termination and next to the lands can cause both intermittent and total failure. The problem is threefold. First, low standoff gaps block flux outgassing channels. Solvents and activators formulated in the flux package are designed to decompose as specific points during the temperature rise during reflow. The mass of solder under many leadless components in combination with a low standoff gap can shield the flux from reaching its designed outgassing temperatures. Under these conditions, the amount and the softness of the flux residue increases.

Second, the distance between conductors is so close that the span for metal oxides to migrate is less. Coulomb's law is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles². As the distance between conductors narrow, the electrostatic force of oppositely charged particles increases. Metal oxides are removed from the metal surface during the soldering process. These metal ions are encapsulated into the flux residue. When flux residue is both pliable and active, the potential to react with the metal oxide increases. Leakage currents, which slow response time and dendritic shorts between the cathode and anode, can impact device reliability.

Third, electronics are no longer in controlled environments. Climatic reliability must be considered. Flux residues and other ionic residues left on a printed circuit board assembly are a potential threat from moisture that can form on the PCB due to atmospheric conditions³. The current use of no-clean flux systems should, in principle, only leave benign surface contaminants. The variation in temperature on the PCB surface during soldering due to thermal and process conditions can result in considerable amounts of localized residues³.

Experimental

Residues trapped under bottom terminations are not readily visible, even when imaging the side of a component. The cleaning tools and cleaning materials do an effective job of removing flux residues. Surface residues are not a problem to clean. Residues trapped under leadless components

require flow channels that penetrate, wet, dissolve and flush these residues away.

Traditional process control methods are not effective in quantitating the activity and risk factors of residues located under the body of a component. Some components are more problematic to contaminated failures than others. To address this problem, there is a need for quantifiable data to identify these site-specific residues and to determine if these residues create an electrochemical migration risk.

SIR testing measures the changes in the surface insulation resistance of a pre-selected material set on a representative test coupon. SIR is the preferred method for quantifying harmful effects that might arise from solder flux or other process residues left on external surfaces after soldering, which can cause unwanted electrochemical reactions that grossly affect reliability⁴. SIR measurements are taken at specific time intervals over the life of the test.

The assembly process involves several different process materials including solder flux, solder paste, solder wire, underfill materials, adhesives, staking compounds, temporary masking materials, cleaning solvents, conformal coatings and more. The test used for this research employs a test condition of 40° C and 90% relative humidity. The voltage bias applied to the test patterns was 5 volts.

Testing is a 'site-specific' qualification process that should be performed on hardware built at the manufacturer's location. The board is designed into quadrants, with each quadrant populated with different component types. Sensors are routed to the bottom termination where the flux residue is trapped. The component specifications and test are documented and illustrated below.

Test Board used for this study is illustrated below:

Figure 1: SIR Test Board

Quadrant 1

QFN 48-T

- 48 Leads
- 7x7 mm
- 0.5 mm Pitch
- Cleaning Challenge
 - Standoff ~ 25-40µm
 - Large solder mass
 - Flux residue may not properly outgas
 - Errant residue can cause electrochemical migration

Quadrant 2

• FBGA

- o 244 I/O
- o 7x7mm
- \circ 0.5 mm Pitch
- Cleaning Challenge
 - Standoff ~ 25-100μm
 - Large standoff improves cleanability
 - When standoff is below 30µm, the residue next to the center lug can be challenging to clean and lower SIR resistance

Quadrant 3

- QFP 160
 - o 160 Leads
 - 28x28 mm
 - \circ 0.65 mm Pitch
 - Cleaning Challenge
 - Standoff ~ 100-150μm
 - Tight pitch can trap wash fluids. The SIR comb pattern detects rinse effectiveness

• Tight pitch can restrict flow channels

- Quadrant 4
 - Caps o 0805
 - o 0603
 - o 0402
 - o 0201
 - Cleaning Challenge
 - Standoff ~ 8-30μm
 - Flux residue bridges conductors
 - Difficult to penetrate and remove all residues

Three soldering materials were selected for this study:

- 1. High reliability No-Clean solder paste
- 2. Jet printed No-Clean solder paste
- 3. Water soluble solder paste

Two cleaning processes were studied:

- 1. Inline Cleaning Machine
 - a. 16 minute wash exposure
 - b. Fan/Coherent jets
 - c. 155°F wash temperature
 - d. 18% Wash Fluid
 - e. DI Water Rinse
- 2. Cabinet Style Batch Cleaning Machine
 - a. 15 minute wash exposure
 - b. 140° wash temperature
 - c. 15% Wash Fluid
 - d. DI Water Rinse to 250Ω

Responses: • SIR

- SIR IPC Method 2.6.3.7
 - \circ 40°C/90%RH/5V

Data Findings

- 1. No-Clean Solder Paste
 - **a.** Not Cleaned
 - **b.** Inline Cleaned
 - **c.** Batch Cleaned

No-Clean Solder Paste

Not Cleaned:

- X-Ray
- Ion Chromatography
 - Separate IC for each quadrant
 - Inline cleaned boards
 - Batch cleaned boards
 - o No-Clean and Water Soluble Solder Pastes
- Visual Side View
- Standoff Gap

For each condition, there was 3 replicates.

The aggregate of those findings will be reported in Main Effect Plots.

Figure 2: X-Ray Images of the No-Clean Solder Paste that was not cleaned

Figure 3: Side Views of the No-Clean Solder Paste that was not cleaned

Channel A		Channel B		Channel C		Channel D		
7.186 Log ₁	Ω	6.984 Log ₁	Ω_0	6.537 Log ₁	Ωα	8.341 Log ₁	8.341 Log ₁₀ Ω	
Measureme	ent Stats	Measureme	ent Stats	Measurement Stats		Measurement Stats		
Maximum:	8.599 Log ₁₀ Ω	Maximum:	7.866 Log ₁₀ Ω	Maximum:	6.848 Log ₁₀ Ω	Maximum:	10.642 Log ₁₀ Ω	
Minimum:	6.714 Log₁₀Ω	Minimum:	6.876 Log₁₀Ω	Minimum:	6.245 Log₁₀Ω	Minimum:	8.345 Log₁₀Ω	
Mean:	7.329 Log₁₀Ω	Mean:	7.162 Log₁₀Ω	Mean:	6.625 Log ₁₀ Ω	Mean:	9.381 Log₁₀Ω	
Median:	7.203 Log₁₀Ω	Median:	7.049 Log₁₀Ω	Median:	6.612 Log ₁₀ Ω	Median:	8.928 Log₁₀Ω	
Std Dev:	7.439 Log ₁₀ Ω	Std Dev:	6.960 Log ₁₀ Ω	Std Dev:	5.980 Log ₁₀ Ω	Std Dev:	9.683 Log₁₀Ω	
Measureme	ent Info							
Measuremen	t Count: 503							
Measuremen	t Errors: 0							
First Failure	e Detected:	First Failure	e Detected:	First Failure	e Detected:			
Fri, June 28 10:	51:49 PM CDT	Fri, June 28 10:	51:49 PM CDT	Fri, June 28 10:	51:49 PM CDT			
Elapsed Time	: 0.16 hours	Elapsed Time	: 0.16 hours	Elapsed Time	: 0.16 hours			

Figure 5: SIR Measurement Stats for the No-Clean Solder Paste that was not cleaned

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Inline Cleaning Process:

Figure 6: X-Ray Images of the No-Cleaned Solder Paste after cleaning through the Inline Process

Figure 7: Side views of the No-Clean Solder paste after cleaning through the Inline Process

Figure 8: SIR Testing over 168 hours on the No-Clean Solder Paste cleaned through the Inline Process

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Table 2: Measurement Stats for No-Clean Solder Paste cleaned through the Inline Process

Channel A 2.924855e+8 Ω		Channel B		Channel C		Channel D	
		1.849362	e+11 Ω	1.011739e	e+7 Ω	3.753049e+11 Ω	
Measurem	ent Stats	Measurem	ent Stats	Measurem	ent Stats	Measurement Stats	
Maximum:	2.925634e+8 Ω	Maximum:	Λaximum: 2.791126e+11 Ω		1.027399e+7 Ω	Maximum:	4.091766e+11 Ω
Minimum:	9.043414e+7 Ω	Minimum:	1.696844e+ <mark>1</mark> 1 Ω	Minimum:	6.7687 <mark>1</mark> 8e+6 Ω	Minimum:	3.029382e+11 Ω
Mean:	1.688760e+8 Ω	Mean:	2.000968e+ <mark>1</mark> 1Ω	Mean:	8.333576e+6 Ω	Mean:	3.445580e+11 Ω
Median:	1.535458e+8 Ω	Median:	1.957368e+ <mark>1</mark> 1 Ω	Median:	7.975566e+6 Ω	Median:	3.435247e+11 Ω
Std Dev:	5.787380e+7 Ω	Std Dev:	1.248680e+10 Ω	Std Dev:	9.715629e+5 Ω	Std Dev:	2.063867e+10 Ω
Measurem	ent Info	Measurement Info		Measurement Info		Measurement Info	
Measuremei	nt Count: 503	Measureme	nt Count: 503	Measureme	nt Count: 503	Measureme	nt Count: 503
Measureme	nt Errors: 0	Measureme	nt Errors: 0	Measureme	nt Errors: 0	Measureme	ent Errors: 0
First Failur	e Detected:			First Failu	re Detected:		
Mon, June 24	9:46:07 AM CDT			Mon, June 24	9:46:07 AM CDT		
Elapsed Tim	e: 0.07 hours			Elapsed Tim	e: 0.07 hours		

Figure 9: SIR Measurement Stats on No-Clean Solder Paste cleaned through the Inline process

Batch Cleaning Process

Figure 9: X-Ray Images of the No-Clean Solder Paste after cleaning through the Batch Process

Figure 10: Side views of the No-Clean Solder paste after cleaning through the Batch Process

Table 3: Measurement Stats for the No-Clean Solder Paste cleaned through the Batch Process

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Channel A 1.058881e+8 Ω		Channel B 4.936672e+10 Ω		Channel C 6.601460e+6 Ω		Channel 2.0431620	Channel D 2.043162e+8 Ω	
Measurem	ent Stats	Measurem	nent Stats	5	Measurem	ent Stats	Measurem	ent Stats
Maximum:	1.253459e+8 Ω	Maximum:	7.434124	e+10 Ω	Maximum:	6.930341e+6 Ω	Maximum:	4.881515e+8 Ω
Minimum:	9.759881e+7 Ω	Minimum:	4.858507	e+10 Ω	Minimum:	5.402132e+6 Ω	Minimum:	2.034128e+8 Ω
Mean:	1.039583e+8 Ω	Mean:	5.738689	e+10 Ω	Mean:	5.780623e+6 Ω	Mean:	2.878636e+8 Ω
Median:	1.034343e+8 Ω	Median:	5.666239	e+10 Ω	Median:	5.591077e+6 Ω	Median:	2.693189e+8 Ω
Std Dev:	4.883179e+6 Ω	Std Dev:	5.073193	3e+9 Ω	Std Dev:	3.592278e+5 Ω	Std Dev:	6.573900e+7 Ω
Measurem	ent Info	Measurement Info		Measurement Info		Measurem	Measurement Info	
Measuremei	nt Count: 503	Measureme	nt Count:	503	Measureme	nt Count: 503	Measureme	nt Count: 503
Measureme	nt Errors: 0	Measureme	nt Errors:	0	Measureme	nt Errors: 0	Measureme	nt Errors: 0
First Failur	e Detected:				First Failur	e Detected:		
Wed, June 26	6:25:35 PM CDT				Mon, June 24	9:46:07 AM CDT		
Elapsed Tim	e: 56.73 hours				Elapsed Tim	e: 0.07 hours		

No-Clean Solder Paste + Jet Printing Solder Paste in Quadrant 2

Not Cleaned

Figure 12: X-Ray Images of the No-Clean + Jet Printing Solder Pastes Not Cleaned

Figure 13: Side views of the No-Clean + Jet Printing Solder pastes Not Cleaned

Figure 14: SIR Testing over 168 hours on the No-Clean Solder + Jet Printing Solder Pastes Not Cleaned

Table 4: Measurement Stats for No-Clean and Jet Printed Solder Pastes that was Not Cleane
--

Channel A	A Contraction of the second seco	Channel B		Channel C		Channel D	
7.719 Log ₁	7.719 Log ₁₀ Ω		8.629 Log ₁₀ Ω		Ω_0	8.267 Log ₁₀ Ω	
Measureme	ent Stats	Measureme	ent Stats	Measureme	ent Stats	Measurement Stats	
Maximum:	9.705 Log ₁₀ Ω	Maximum:	9.141 Log ₁₀ Ω	Maximum:	7.608 Log ₁₀ Ω	Maximum:	11.837 Log ₁₀ Ω
Minimum:	7.717 Log ₁₀ Ω	Minimum:	8.386 Log ₁₀ Ω	Minimum:	6.474 Log ₁₀ Ω	Minimum:	8.266 Log ₁₀ Ω
Mean:	8.142 Log ₁₀ Ω	Mean:	8.584 Log ₁₀ Ω	Mean:	6.933 Log ₁₀ Ω	Mean:	9.959 Log₁₀Ω
Median:	7.979 Log ₁₀ Ω	Median:	8.552 Log ₁₀ Ω	Median:	6.792 Log ₁₀ Ω	Median:	8.829 Log₁₀Ω
Std Dev:	8.469 Log ₁₀ Ω	Std Dev:	8.120 Log ₁₀ Ω	Std Dev:	6.849 Log ₁₀ Ω	Std Dev:	10.681 Log₁₀Ω
Measureme	ent Info	Measureme	ent Info	Measureme	ent Info	Measureme	ent Info
Measuremen	t Count: 503	Measuremen	t Count: 503	Measuremen	t Count: 503	Measuremen	t Count: 503
Measuremen	t Errors: 0	Measuremen	t Errors: 0	Measuremen	t Errors: 0	Measuremen	t Errors: 1
First Failure	e Detected:			First Failure	e Detected:		
Mon, July 14:3	2:46 PM CDT			Fri, June 28 10:	51:49 PM CDT		
Elapsed Time	e: 65.84 hours			Elapsed Time	: 0.16 hours		

Inline Cleaning Process

Figure 15: X-Ray Images of the No-Clean + Jet Printing Solder Pastes cleaned through the Inline Process

Figure 16: Side views of the No-Clean + Jet Printing Solder Pastes cleaned through the Inline Process

Figure 17: SIR Testing over 168 hours on the No-Clean Solder + Jet Printing Solder Pastes Cleaned through the Inline

Table 5: Measurement Stats for the No-Clean and Jet Printed Solder Pastes cleaned through the Inline Process

Channel A 7.56 Log _ю Ω		Channel B 11.99 Log₀Ω		Channel C 8.67 Log _ю Ω		Channel D 12.01 Log ₁₀ Ω	
Measureme	nt Stats	Measureme	nt Stats	Measurement Stats		Measurement Stats	
Maximum:	10.20 Log ₁₀ Ω	Maximum:	12.27 Log ₁₀ Ω	Maximum:	8.70 Log ₁₀ Ω	Maximum:	12.14 Log ₁₀ Ω
Minimum:	7.48 Log₁₀Ω	Minimum:	11.96 Log₀Ω	Minimum:	8.42 Log₁₀Ω	Minimum:	10.73 Log₁₀Ω
Mean:	8.76 Log₁₀Ω	Mean:	12.03 Log₁₀Ω	Mean:	8.63 Log₁₀Ω	Mean:	11.90 Log₀Ω
Median:	8.11 Log₁₀Ω	Median:	12.01 Log₀Ω	Median:	8.66 Log₁₀Ω	Median:	11.90 Log₀Ω
Std Dev:	9.25 Log ₁₀ Ω	Std Dev:	11.25 Log ₁₀ Ω	Std Dev:	7.74 Log ₁₀ Ω	Std Dev:	11.29 Log ₁₀ Ω
Measureme	nt Info	Measureme	nt Info	Measureme	nt Info	Measureme	nt Info
Measurement Count: 493		Measurement	Count: 493	Measurement	Count: 493	Measurement Count: 493	
Measurement	Errors: 0	Measurement	Errors: 0	Measurement	Errors: 0	Measurement	t Errors: 0
First Failure	Detected:						

Wed, July 3 05:12:13 CDT

Elapsed Time: 102.15 hours

Batch Cleaning Process

Figure 18: X-Ray Images of the No-Clean + Jet Printing Solder Pastes cleaned through the Batch Process

Figure 19: Side views of the No-Clean + Jet Printing Solder Pastes cleaned through the Batch Process

Figure 20: SIR Testing over 168 hours on the No-Clean Solder + Jet Printing Solder Pastes Cleaned through the Batch

Table 6: Measurement Stats for the No-Clean and Jet Printed Solder Pastes clean	ed through the Batch Process
---	------------------------------

Channel A	L .	Channel B		Channel C		Channel D)	
8.51 Log ₁₀ Ω		8.64 Log₀Ω	2	8.07 Log ₁₀ Ω		10.53 Log₀Ω		
Measureme	nt Stats	Measureme	nt Stats	Measureme	nt Stats	Measurement Stats		
Maximum:	10.30 Log ₁₀ Ω	Maximum:	9.07 Log ₁₀ Ω	Maximum:	8.79 Log ₁₀ Ω	Maximum:	11.39 Log₁₀Ω	
Minimum:	8.50 Log₁₀Ω	Minimum:	8.22 Log₁₀Ω	Minimum:	8.07 Log ₁₀ Ω	Minimum:	10.53 Log₁₀Ω	
Mean:	8.91 Log₁₀Ω	Mean:	8.50 Log₁₀Ω	Mean:	8.20 Log₁₀Ω	Mean:	10.98 Log₁₀Ω	
Median:	8.63 Log₁₀Ω	Median:	8.47 Log₁₀Ω	Median:	8.16 Log₁₀Ω	Median:	10.84 Log ₁₀ Ω	
Std Dev:	9.15 Log ₁₀ Ω	Std Dev:	8.13 Log ₁₀ Ω	Std Dev:	7.76 Log ₁₀ Ω	Std Dev:	10.79 Log ₁₀ Ω	
Measureme	nt Info	Measureme	nt Info	Measureme	nt Info	Measureme	ent Info	
Measurement	t Count: 493	Measurement	: Count: 493	Measurement	: Count: 493	Measuremen	t Count: 493	
Measurement	Errors: 0	Measurement	Errors: 0	Measurement	Errors: 0	Measuremen	t Errors: 4	

Water Soluble Solder Paste

Not Cleaned

Figure 21: X-Ray Images of the Water Soluble Solder Paste that was not cleaned

Figure 22: Side views of the Water Soluble Solder Pastes that was not cleaned

Table 7: Measurement Stats for the Water Soluble Solder Paste that was Not Cleaned

Channel A 6.020 Log ₁₀ Ω		Channel B 6.041 Log _m Ω		Channel C 5.997 Log _n Ω		Channel D 6.130 Log ₁₀ Ω	
Measureme	ent Stats	Measureme	ent Stats	Measureme	ent Stats	 Measurement Stats	
Maximum:	6.033 Log ₁₀ Ω	Maximum:	6.055 Log ₁₀ Ω	Maximum:	6.037 Log ₁₀ Ω	Maximum:	6.224 Log₁₀Ω
Minimum:	5.995 Log₁₀Ω	Minimum:	5.995 Log₁₀Ω	Minimum:	5.997 Log ₁₀ Ω	Minimum:	5.997 Log₀Ω
Mean:	5.999 Log₁₀Ω	Mean:	6.020 Log ₁₀ Ω	Mean:	5.998 Log ₁₀ Ω	Mean:	6.109 Log₀Ω
Median:	5.998 Log₁₀Ω	Median:	6.022 Log ₁₀ Ω	Median:	5.998 Log ₁₀ Ω	Median:	6.113 Log₀Ω
Std Dev:	4.150 Log ₁₀ Ω	Std Dev:	4.561 Log ₁₀ Ω	Std Dev:	3.725 Log₁₀Ω	Std Dev:	5.194 Log₁₀Ω
Measureme	ent Info	Measureme	ent Info	Measureme	ent Info	Measureme	ent Info
Measuremen	t Count: 503	Measuremen	t Count: 503	Measuremen	t Count: 503	Measurement Count: 503	
Measuremen	CERTORS: 0	weasuremen	CERTORS: 0	weasuremen		weasuremen	CERTORS: C
First Failure	e Detected:	First Failure	e Detected:	First Failure	e Detected:	First Failure	e Detected:
Fri, June 21 1:40	6:22 PM CDT	Fri, June 21 1:40	6:22 PM CDT	Fri, June 21 1:4	6:22 PM CDT	Fri, June 21 1:4	6:22 PM CDT
Elapsed Time	: 0.06 hours	Elapsed Time	: 0.06 hours	Elapsed Time	: 0.06 hours	Elapsed Time	: 0.06 hours

Figure 24: X-Ray Images of the Water Soluble Solder Paste cleaned through the Inline Process

Figure 26: SIR Testing over 168 hours on the Water Soluble Solder Paste cleaned through the Inline Process

Table 8: Measurement Stats for the Water Soluble Solder Paste cleaned through the Inline Process

Channel A	\	Channel B		Channel C		Channel D	
9.823 Log₀Ω		9.721 Log₀Ω		10.030 Log₀Ω		11.091 Log ₁₀ Ω	
Measureme	ent Stats	Measureme	ent Stats	Measureme	ent Stats	Measurement Stats	
Maximum:	9.974 Log₁₀Ω	Maximum:	9.988 Log₁₀Ω	Maximum:	10.134 Log₁₀Ω	Maximum:	11.158 Log₁₀Ω
Minimum:	9.460 Log ₁₀ Ω	Minimum:	9.115 Log₁₀Ω	Minimum:	8.625 Log ₁₀ Ω	Minimum:	8.592 Log ₁₀ Ω
Mean:	9.594 Log ₁₀ Ω	Mean:	9.362 Log₁₀Ω	Mean:	9.510 Log ₁₀ Ω	Mean:	10.649 Log ₁₀ Ω
Median:	9.510 Log ₁₀ Ω	Median:	9.210 Log₁₀Ω	Median:	9.306 Log ₁₀ Ω	Median:	10.598 Log ₁₀ Ω
Std Dev:	9.150 Log₁₀Ω	Std Dev:	9.205 Log ₁₀ Ω	Std Dev:	9.538 Log ₁₀ Ω	Std Dev:	10.543 Log₁₀Ω
Measureme	ent Info	Measureme	ent Info	Measureme	ent Info	Measureme	ent Info
Measuremen	t Count: 503	Measuremen	t Count: 503	Measurement Count: 503		Measurement Count: 503	
Measuremen	t Errors: 0	Measuremen	t Errors: 0	Measuremen	t Errors: 0	Measurement Errors: 0	

Batch Cleaning Process

Figure 27: X-Ray Images of the Water Soluble Solder Paste cleaned through the Batch Process

Figure 28: Side views of the Water Soluble Solder Pastes cleaned through the Batch Process

Figure 29: SIR Testing over 168 hours on the Water Soluble Solder Paste cleaned through the Batch Process

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Table 9: Measurement Stats for the Water Soluble Solder Paste cleaned through the Batch Process

Channel A	N C C C C C C C C C C C C C C C C C C C	Channel B		Channel C		Channel D		
7.230 LOg	$7.236 \log_{10}\Omega$		9.592 Log ₁₀ Ω		022 2	$10.376 \operatorname{LOg}_{10}\Omega$		
Measurement Stats		Measurement Stats		Measureme	Measurement Stats		Measurement Stats	
Maximum:	7.274 Log ₁₀ Ω	Maximum:	10.073 Log ₁₀ Ω	Maximum:	9.397 Log ₁₀ Ω	Maximum:	10.527 Log ₁₀ Ω	
Minimum:	6.162 Log ₁₀ Ω	Minimum:	9.352 Log₁₀Ω	Minimum:	6.707 Log ₁₀ Ω	Minimum:	8.745 Log₁₀Ω	
Mean:	7.013 Log ₁₀ Ω	Mean:	9.443 Log₁₀Ω	Mean:	9.038 Log ₁₀ Ω	Mean:	10.085 Log₁₀Ω	
Median:	7.023 Log ₁₀ Ω	Median:	9.387 Log₁₀Ω	Median:	9.016 Log ₁₀ Ω	Median:	10.074 Log₁₀Ω	
Std Dev:	6.508 Log ₁₀ Ω	Std Dev:	8.913 Log ₁₀ Ω	Std Dev:	8.806 Log ₁₀ Ω	Std Dev:	9.760 Log ₁₀ Ω	
Measureme	ent Info	Measurement Info		Measurement Info		Measurement Info		
Measuremen	t Count: 503	Measuremen	t Count: 503	Measurement Count: 503		Measurement Count: 503		
Measuremen	t Errors: 0	Measuremen	t Errors: 15	Measuremen	t Errors: 0	Measuremen	t Errors: 5	
First Failure	e Detected:			First Failure	e Detected:			
Fri, June 21 1:4	6:22 PM CDT			Fri, June 21 1:4	6:22 PM CDT			
Elapsed Time	: 0.06 hours			Elapsed Time	: 0.06 hours			

Water Soluble Solder Paste + Jet Printing Solder Paste

Not Cleaned

Figure 31: Side views of the Water Soluble + Jet Printing Solder Pastes that was Not Cleaned

Figure 32: SIR Testing over 168 hours on the Water Soluble + Jet Printing Solder Paste that was Not Cleaned

Table 10: Measurement Stats for the Water Soluble + Jet Printed Solder Pastes that was Not Cleaned

Channel A		Channel B		Channel C		Channel D	
5.99 Log ₁₀ Ω		8.75 Log ₁₀ Ω		5.99 Log ₁₀ Ω		6.47 Log₀Ω	
Measurement Stats		Measurement Stats		Measurement Stats		Measurement Stats	
Maximum:	6.05 Log₁₀Ω	Maximum:	9.04 Log ₁₀ Ω	Maximum:	6.03 Log ₁₀ Ω	Maximum:	6.48 Log ₁₀ Ω
Minimum:	5.99 Log₁₀Ω	Minimum:	8.18 Log₁₀Ω	Minimum:	5.99 Log ₁₀ Ω	Minimum:	5.99 Log₁₀Ω
Mean:	6.00 Log ₁₀ Ω	Mean:	8.71 Log₁₀Ω	Mean:	6.00 Log ₁₀ Ω	Mean:	6.30 Log ₁₀ Ω
Median:	5.99 Log₁₀Ω	Median:	8.69 Log₁₀Ω	Median:	5.99 Log ₁₀ Ω	Median:	6.34 Log ₁₀ Ω
Std Dev:	4.55 Log ₁₀ Ω	Std Dev:	8.07 Log ₁₀ Ω	Std Dev:	3.92 Log₁₀Ω	Std Dev:	5.79 Log ₁₀ Ω
Measurement Info		Measurement Info		Measurement Info		Measurement Info	
Measurement Count: 503		Measurement	Count: 503	Measurement Count: 503		Measurement Count: 503	
Measurement	Errors: 0	Measurement	Errors: 0	Measurement	Errors: 0	Measurement	Errors: 0
First Failure Detected:				First Failure Detected:		First Failure Detected:	
Fri, June 21 15:09:20 CDT				Fri, June 21 15:09:20 CDT		Fri, June 21 15:09:20 CDT	
Elapsed Time:	0.06 hours			Elapsed Time:	0.06 hours	Elapsed Time	0.06 hours

Inline Cleaning Process

Figure 33: X-Ray Images of the Water Soluble + Jet Printing Solder Pastes cleaned through the Inline Process

Figure 34: Side views of the Water Soluble + Jet Printing Solder Pastes cleaned through the Inline Process

Figure 35

: SIR Testing over 168 hours on the Water Soluble + Jet Printing Solder Paste cleaned through the Inline Process

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Table 11: Measurement Stats for the Water Soluble + Jet Printed Solder Pastes cleaned through the Inline Process

Channel A 10.51 Log ₁₀ Ω Measurement Stats		Channel B 11.78 Log ₁₀ Ω Measurement Stats		Channel C 9.98 Log _{το} Ω Measurement Stats		Channel D 11.51 Log ₁₀ Ω Measurement Stats	
Minimum:	10.17 Log₀Ω	Minimum:	11.58 Log₁₀Ω	Minimum:	8.86 Log₁₀Ω	Minimum:	9.30 Log₁₀Ω
Mean:	10.42 Log ₁₀ Ω	Mean:	11.76 Log₀Ω	Mean:	9.73 Log₁₀Ω	Mean:	11.41 Log₀Ω
Median:	10.45 Log ₁₀ Ω	Median:	11.76 Log₀Ω	Median:	9.73 Log₁₀Ω	Median:	11.42 Log₁₀Ω
Std Dev:	9.69 Log ₁₀ Ω	Std Dev:	10.72 Log ₁₀ Ω	Std Dev:	9.36 Log₁₀Ω	Std Dev:	10.77 Log ₁₀ Ω
Measurement Info		Measurement Info		Measurement Info		Measurement Info	
Measurement Count: 503		Measurement Count: 503		Measurement Count: 503		Measurement Count: 503	
Measuremen	t Errors: 0	Measurement	Errors: 0	Measurement	Errors: 0	Measuremen	t Errors: 24

Batch Cleaning Process

Figure 36: X-Ray Images of the Water Soluble + Jet Printing Solder Pastes cleaned through the Batch Process

Figure 37: Side views of the Water Soluble + Jet Printing Solder Pastes cleaned through the Batch Process

Figure 38: SIR Testing over 168 hours on the Water Soluble + Jet Printing Solder Paste cleaned through the Batch Process Table 12: Measurement Stats for the Water Soluble + Jet Printed Solder Pastes cleaned through the Batch Process

Channel A 7.80 Log ₁₀ Ω Measurement Stats		Channel B 11.34 Log₀Ω Measurement Stats		Channel C 8.80 Log ₁₀ Ω Measurement Stats		Channel D 10.71 Log ₁₀ Ω Measurement Stats									
								Maximum:	7.80 Log ₁₀ Ω	Maximum:	11.64 Log ₁₀ Ω	Maximum:	8.82 Log ₁₀ Ω	Maximum:	10.77 Log ₁₀ Ω
								Minimum:	6.32 Log ₁₀ Ω	Minimum:	11.18 Log₁₀Ω	Minimum:	6.80 Log₁₀Ω	Minimum:	8.59 Log₁₀Ω
Mean:	7.66 Log ₁₀ Ω	Mean:	11.39 Log₁₀Ω	Mean:	8.63 Log₁₀Ω	Mean:	10.44 Log₁₀Ω								
Median:	7.71 Log₁₀Ω	Median:	11.38 Log₁₀Ω	Median:	8.68 Log₁₀Ω	Median:	10.48 Log₁₀Ω								
Std Dev:	7.16 Log₁₀Ω	Std Dev:	10.54 Log ₁₀ Ω	Std Dev:	8.19 Log ₁₀ Ω	Std Dev:	10.18 Log ₁₀ Ω								
Measurement Info		Measurement Info		Measurement Info		Measurement Info									
Measurement Count: 503		Measurement	t Count: 503	Measurement	Count: 503	Measuremen	t Count: 503								
Measurement	Errors: 0	Measurement	t Errors: 3	Measurement	Errors: 0	Measuremen	t Errors: 0								
First Failure Detected:				First Failure Detected:											
Fri, June 21 15:09:20 CDT				Fri, June 21 15:09:20 CDT											
Elapsed Time:	0.06 hours			Elapsed Time:	0.06 hours										

Inferences from the Data Findings

Analysis of covariance (ANCOVA) statistical model was used to analyze the main effects. ANCOVA, which blends Anova and Regression, evaluates whether the means of a dependent variable is equal across levels of a categorical independent variable. The independent variable was statistically controlled for the effects of other nuisance variables.

Just as in ANOVA, there are several ways to analyze the differences in how the variance is partitioned (sum of squares). Types I, II, & & III are common. The analysis makes no consensus on which is "right." Much of the analysis of this data set was done with Type II sum of squares. This method detects main effects. In addition, Type I analysis was performed on variables that showed lower statistical significance.

Hypothesis testing was used to determine if variation between two sample distributions can be explained through random chance or not. If we have to conclude that two distributions vary in a meaningful way, we must take enough precaution to see that the differences are not just through random chance. At the heart of Type I error (false – positive) is that we don't want to make an unwarranted hypothesis so we exercise a lot of care by minimizing the chance of its occurrence

Effect size measures the impact of each factor from the data findings. The four blocks of data were compared. Most effect sizes ranged from 0-1. These varieties are extensions of the linear regression. This form of data analysis determines the percentage of total variance for each factor. Two key effect sizes were considered:

• Partial eta squared: $\eta_{p}^{2} = SS_{effect} / SS_{effect} + SS_{error}$

challenging to clean. The key factors were standoff gap and component pitch.

The solder paste flux residue was also a significant factor. The water soluble solder paste was easier to clean but when flux

• Partial omega squared: $w_p^2 = df_{effect} \times (MS_{effect} - MS_{error})/df_{effect} \times MS_{effect} + (N-df_{effect}) \times MS_{error}$

For this study both were calculated and compared.

Table 13: Partial Eta Squared and Partial Omega Squared

Effect Size1-4	Small Effect	Medium Effect	Large Effect
Partial Eta Squared (η_p^2)	0.01	0.06	0.14
Partial Omega Squared (ω_p^2)	0.01	0.06	0.14

Partial Eta Squared analysis (Type 1) and Partial Omega Squared (Type II) finds that the Cleaning Method exhibits the highest level of significance. The factor of the greatest significance was the cleaning method that comprised either the Inline or Batch cleaning process. When cleaning leadless components, the cleaning fluid must penetrate, wet the residue, dissolve the residue, create a flow channel and fully remove all sources of residue. The inline process is equipped with spray jets that are perpendicular to the plane of the circuit board being cleaned. The energy from these spray jets create deflective energy to drive the cleaning agent to the source of the residue. The batch cleaning method delivers high flow but at lower impingement force. On low profile components, this cleaning method exhibited lower effectiveness. Other contributing factors were wash temperature, cleaning agent, wash time, and wash concentration.

The component being cleaned exhibited the second highest level of significance. The QFN and QFP160 components were the most residue from this paste was present, SIR values significantly declined. Water soluble flux residues must be completely cleaned. Partially cleaned No-Clean solder paste resulted in lower SIR values. There was little difference from the use of the Jet Printed solder paste versus the Stencil Printed solder paste.

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Figure 39: Type I and Type II Levels of Significance

Type II testing finds that the cleaning method and component type had the largest significant effect. Standoff, solder paste, and run (jet vs. stencil printing) had small effects.

Copyright Honeywell Federal Manufacturing & Technologies LLC, 2019. Notice: This manuscript has been authored by Honeywell Federal Manufacturing & Technologies under contract No.DE-NA-0002839 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Effects Size of Main Effects (type II)

Figure 40: Type II Significant and Small Effects

The IC data analysis found slightly different results when compared to the SIR method. The factors of highest significance were the cleaning method, run (jet vs. stencil printed), solder paste and standoff. When performing the IC analysis, each quadrant was analyzed separately. This was done to reduce the understating of the IC values on sections of the board where no component was placed. The significant variables factored into the levels of anions and cations. For example, boards cleaned using the batch process resulted in higher levels of weak organic acids. The levels also varied for the jet printing versus the stencil printed boards. Both the solder paste and standoff gap influenced the levels of ionic contamination.

Figure 41: Ion Chromatography (IC) Levels of Significance

Failure Modes and Effecst Analysis (FEMA)

- <u>Identify a failure mode</u> The research finds that process contamination next to conductors and under the bottom termination lower surface insulation resistance due to metal migration in the form of leakage currents and dendritic growth. The data also finds that the problem is more pronounced based on the component design. Flux residues and other ionic residues left on a printed circuit board from the manufacturing process are a potential threat on specific component types.
- <u>Identify the likely cause of failure</u> No-Clean flux systems are designed to leave behind benign surface contaminants during wave and reflow soldering processes. As components miniaturize, higher I/O and tighter pitch narrow the conductive pathways under the components bottom termination. When there is a high

termal mass of solder and low standoff gap, the soldering temperatures can vary in temperature due to block outgassing pathways. When this occurs, the activity of the flux residue can be active. These localized residues can cause electrochemical failures under the right conditions.

3. <u>Identify the failures probability of occurrence</u> – Components of the flux residue (most notably the weak organic acid activator system) in contact with water layer – formed due to humidity – can cause higher leakage current (reduction in surface insulation resistance (SIR)) between biased points on specific components. Active residues like carboxylic acids are hygroscopic and therefore influence the amount of water adsorption under humid conditions. Subsequent dissolution of the active part of the flux into the

adsorbed water layer then influences the SIR followed by detrimental electrochemical processes at the metallic connections.

- Establish the likelihood of detection Materials and 4 Process Characterization / Qualification test methods are called out within industry standards. Both chemical and electrical test methods are performed to quantify any deleterious effects that might arise from solder flux or other process residues let on external surfaces after soldering, which can cause unwanted electro-chemcial reactions that grossly affect reliability. Test boards designed with critical components that are prone to trap flux residues and the use of SIR instrumentation can identify and analyze risks associated with contamination.
- 5. Identify and prove out corrective actions Surface Insulation Resistance testing that can be done at the manufacturing site can be used to establish acceptable and unacceptable levels of residues on production hardware. Control measures such as SPC can be used to eliminate risk or mitigate their effects. This enables the process engineer to monitor changes to their process. The test method allows for printed circuit board design, process development, process control and product acceptance.

Follow on Research

The research completed provided a baseline on challenging components processed through the Inline and Batch process. Follow-on research will leverage the data findings from this research to develop design options and process conditions that demonstrate that a manufacturing process or process change that produce hardware with acceptable end-item performance related to electrochemical risk.

Once those conditions are defined, a Gage R&R study will be performed to gage repeatability and reproducibility of the cleaning process. From these studies, the plan is to measure the amount of cleanliness variation on defined test boards populated with problematic components. The goal will be to measure the variation in the cleaning process and the SIR test instrument.

References

- 1. Sood, B. (2019). Focus on PCB Quality to Drive Reliability. IPC Reliability Forum. Baltimore, MD.
- Coulomb's Law (2019). Retrieved from <u>https://en.wikipedia.org/wiki/Coulomb%27s_law</u>
- Jellesen, M., Westermann, P., Verdingovas, B. Holm, P. & Ambat, R. (n.d.). Relation between PCBA Cleanliness and Climatic Reliability. Department of Mechanical Engineering. Technical University of Denmark.

- 4. IPC 9202. (2011). Material and Process Characterization/Qualification Tst Protocol for Assessing Electrical Performance. A Standard Developed by IPC.
- Okada, K., IS OMEGA SQUARED LESS BIASED? A COMPARISON OF THREE MAJOR EFFECT SIZE INDICES IN ONE-WAY ANOVA. *Behaviormetrika* 2013, 40 (2), 129-147.
- 6. Cohen, J., *Statistical power analysis for the behavioral sciences*. L. Erlbaum Associates: Hillsdale, N.J., 1988.
- Lakens, D., Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for ttests and ANOVAs. *Frontiers in Psychology* 2013, 4 (863).
- 8. Maher, J. M.; Markey, J. C.; Ebert-May, D., The Other Half of the Story: Effect Size Analysis in Quantitative Research. *CBE—Life Sciences Education* **2013**, *12* (3), 345-351.